激光 曷 光电子学进展

大口径长焦距星敏感器光学镜头的设计

摘要 为了提高星敏感器探测极限星等的能力,通过参数计算、选型设计了一种复杂化双高斯结构的光学镜头,经 ZEMAX 软件优化后,最终得到由 12 片球面透镜组成的无渐晕折射式光学镜头。该镜头的人瞳直径为 125 mm,系统焦距为 200 mm,全视场角 2ω 为 14.84°,谱段范围为 $500\sim800$ nm。 20 $^{\circ}$ 温度下的设计结果表明,该光学系统的均方根弥散斑半径小于 3.5 μ m,全视场光学设计调制传递函数(MTF)在 60 1 μ m 处大于 1.5 1 μ m,全视场光学设计调制传递函数(MTF)在 1.5 1 μ m,全视场光学设计调制传递函数(MTF)在 1.5 1 μ m,全视场光学设计调制传递函数(MTF)在 1.5 1 μ m,全视场光学设计调制传递函数(MTF)。 1.5 1 μ m,全视场光学资产。 1.5 1 μ m,经加工、装调后,1.5 1 μ m,经加工、表调后,1.5 1 μ m,是一个工程、表现的,1.5 10 μ m,是一个工程、表现的,1.5 1.

关键词 光学设计;折射式;大口径;长焦距 中图分类号 V248.1 **文献标志码** A

doi: 10. 3788/LOP202158. 1112001

Design of Star Sensor Optical Lens with Large Aperture and Long Focal Length

Sun Dongqi¹, Hu Mingyong^{1*}, Liu Chenkai¹, Feng Zhiwei², Cai Xiaobo¹, Li Zhaoyang¹

¹Academy of Opto-Electric Technology, Hefei University of Technology, Hefei, Anhui 230009, China;

²School of Instrument Science and Opto-Electronics, Hefei University of Technology, Hefei, Anhui 230009, China

Abstract In order to improve the ability of the star sensor to detect the limit magnitude, a complex double-Gaussian structure optical lens is designed through selection of models and parameter calculation in this paper. After optimized by ZEMAX software, a refraction optical lens without vareing composed of 12 spherical lenses is finally obtained. The lens has an entry pupil diameter of 125 mm, a system focal length of 200 mm, a full field angle 2ω of 14.84°, and a spectrum range of 500-800 nm. The design results at a temperature of 20°C show that the root mean square dispersion spot radius is less than 3.5, the full field optical design modulation transfer function (MTF) is more than 0.7 at 60 lp/mm, the energy concentration in 3×3 pixels is more than 90%, the distortion is less than 1%, and the maximum magnification chromatic aberration is 1.6. After processing and adjustment, the lowest laboratory static MTF of the measured optical system at 60 lp/mm is 0.324.

Key words optical design; refraction; large aperture; long focal length

OCIS codes 120. 3620; 120. 5710; 110. 1220

1 引 言

星敏感器是以恒星为探测对象的高精度姿态

测量装置,已被广泛应用于航空、航天、航海、制导、 卫星通讯等领域^[1]。星敏感器由光学系统(包括遮 光罩和光学镜头)、图像传感器件、信号处理部分组

收稿日期: 2020-08-25**; 修回日期**: 2020-09-25**; 录用日期**: 2020-11-12

*E-mail: humy8@126.com

成,其中光学系统是星敏感器姿态测量和导航定位 的关键部分。常见星敏感器的光学镜头包括反射 式、折反式、折衍式和折射式4种结构[1]。反射式系 统结构设计简单、口径大、谱段范围宽且不产生色 差,但视场范围一般较小,且非球面加工、装调难度 大[2-4]。折反式系统是介于折射式和反射式之间的 系统,口径较大,视场范围比反射式略大,但尺寸比 反射式系统小,常被用于小视场、大口径、长焦距镜 头的设计,但仍存在非球面加工难度大等问题[5-7]。 衍射式光学元件具有特殊的色散和光焦度特性,能 很好地校正光学系统的色差、简化结构、提高成像 质量,但加工复杂,受现有工艺水平的限制,衍射式 光学元件还未进行大规模使用[8]。折射式系统是星 敏感器光学镜头最常见的设计形式,其视场范围 大、成像质量好、结构紧凑,但不同波长的光对折射 系统的影响不同,二级光谱校正难度大,且玻璃材 料易受温度影响,从而引起像面漂移;高性能折射 式光学镜头的设计通常基于对称型结构的双高斯 物镜、复杂化双高斯结构或匹兹瓦结构[8-14]。

Michaels等^[9]采用大口径长焦距镜头研制出测量精度可达亚秒级的星敏感器 HAST,HAST光学系统的焦距为 200 mm,人瞳直径为 110 mm,但未公开具体的设计方法。国内对长焦距大口径星敏感器的研究较少,伍雁雄等^[10]设计了一款焦距为 200 mm,人瞳直径为 100 mm,谱段范围为 500~800 nm,视场角为 7.5°×7.5°的亚秒级高精度星相机;并在 2020年公开了一款焦距为 95 mm,相对孔径为 1/2.4,视场角为 8°×8°,谱段范围为 450~1000 nm 的长焦距星敏感器^[11]。国内星敏感器光学系统的焦距一般为 20~50 mm,最大不超 95 mm,均属于短焦距星敏感器光学系统^[8,12-14]。

本文选择光阑置中的对称型复杂化双高斯物镜作为初始结构,在满足设计要求的前提下,采用国产玻璃进行全球面无胶合紧贴透镜设计,得到了分辨率高、像质好的大口径长焦距光学系统,避免了非球面和衍射面加工复杂和装调困难等问题。该系统的焦距为 200 mm,入瞳直径为 125 mm,全视场角 2ω为 14.84°,谱段范围为 500~800 nm。由于长焦距星敏感器在设计时需要兼顾大口径引入的大像差校正、宽光谱导致的色差校正和宽温度范围的无热化设计,设计难度较大。但相比轻小型星敏感器,该长焦距星敏感器的性能有所提升,对于空间遥感要求的大孔径、高能量、高分辨率具有重要意义。

2 光学镜头的参数计算

2.1 探测器的型号

实验选择的探测器型号为QHY-4040,该探测器具有双层制冷系统,能在低温环境下工作,具有86 dB超高动态范围、4 e读出噪声以及帧率高、灵敏度高以及信噪比高等特性,对500~800 nm 谱段范围有较高响应。探测器的像元数为4096×4096,每个像元的像素尺寸为9.0 μ m×9.0 μ m,后截距大于17.5 mm±0.2 mm。

2.2 光学系统的焦距

光学系统的焦距f由互补金属氧化物半导体 (CMOS)探测器的像元大小和角分辨率决定,可表示为

$$f = x/\alpha$$
, (1)

式中, α =45 μ rad为COMS探测器的角分辨率,x=9 μ m为探测器单个像素的宽度,计算得到系统的焦距 f=200 mm。

2.3 光学系统的视场角

光学镜头的设计一般倾向于大视场角,在选定探测器型号和焦距后,视场角也是确定的,光学镜头的全视场角2w、焦距与探测器间的关系可表示为

$$\tan 2\omega = b/f, \tag{2}$$

$$2\omega = \arctan(b/f), \tag{3}$$

式中, CMOS 的方形感光面边长为 36.9 mm, 对角 线的长度 b=52.2 mm。由(3)式得到全视场角 2ω =14.84°。

2.4 入瞳直径

近几年研制的几款星敏感器的设计指标如表1 所示,根据表1将光学系统的入瞳直径设置为125 mm。在星敏感器光学系统的设计中,F数通过限制入瞳直径控制进入探测器像面的能量。在选定光电探测器后,光学系统入瞳直径或全视场角越大,越有利于探测到极限星等,但光学系统的设计难度也会加大。

表1 不同星敏感器的设计指标

Table 1 Design indicators of different star sensors

Serial		Aperture /		Waveband /		
number	f/mm	mm	2ω /(°)	nm		
1	200	100	10.61	500-800		
2	99	99	7	450-900		
3	95	39.6	13.32	450-1000		
4	50	40	11.96	500-800		

2.5 静态调制传递函数

光学系统的调制传递函数(MTF)是综合评价像质的指标,由于探测器的像元尺寸为9.0 μm×9.0 μm,其奈奎斯特频率可表示为

$$N = 1/2x = 56 \text{ lp/mm}_{\circ}$$
 (4)

考虑到系统的综合性能,选择60 lp/mm 奈奎斯特频率作为ZEMAX软件的设计参考,系统的MTF可表示为

 $f_{\text{MTF}}^{\text{sta}} = f_{\text{MTF}}^{\text{opt}} \times f_{\text{MTF}}^{\text{det}} = f_{\text{MTF}}^{\text{des}} \times f_{\text{MTF}}^{\text{pro}} \times f_{\text{MTF}}^{\text{ele}} \times f_{\text{MTF}}^{\text{gro}}, (5)$ 式中, $f_{\text{MTF}}^{\text{sta}}$ 为静态 MTF, $f_{\text{MTF}}^{\text{opt}}$ 为光学 MTF, $f_{\text{MTF}}^{\text{det}}$ 为探测器的 MTF, $f_{\text{MTF}}^{\text{des}}$ 为光学设计 MTF, $f_{\text{MTF}}^{\text{pro}}$ 为加工衰减因子的 MTF, $f_{\text{MTF}}^{\text{ele}}$ 为探测器的电子 MTF, $f_{\text{MTF}}^{\text{ele}}$ 为探测器的几何 MTF。其中, $f_{\text{MTF}}^{\text{ele}} = 0.9$, $f_{\text{MTF}}^{\text{geo}} = 0.637$,根据工程经验取 $f_{\text{MTF}}^{\text{pro}} = 0.8$ 。当静态 MTF 在奈奎斯特频率处大于 0.2 时,光学设计 MTF 至少应为 0.45。

为建立高性能星敏感器模型,选择高帧率、低读出噪声的探测器,根据相关参数确定光学系统的设计指标,从而设计出一种大口径长焦距星敏感器的光学镜头,光学设计指标参数如表2所示。

表 2 光学系统的设计指标 Table 2 Indices of the optical system

Parameter	Index requirement
f/mm	200
2ω /(°)	14.84
Relative aperture	1/1.6
Waveband /nm	500-800
Back focal length /mm	>17.5
Energy encircled concentration	$>$ 90% in 3×3 pixels
Optical design MTF(Nyquist frequency)	>0.45

3 光学镜头的设计

3.1 光学镜头的设计难点和解决方案

星敏感器光学系统的焦距、入瞳直径、视场角和 谱段范围等指标直接决定了星敏感器探测极限星等 的灵敏度、单星测量精度,长焦距、大口径、大相对孔 径、大视场角和宽光谱有利于提高星敏感器探测极 限星等的能力,也有利于提高测量精度、提升轻小型 星敏感器光学系统的性能。大口径长焦距星敏感器 光学镜头的设计难点:1)大口径星敏感器在增加进 入光学系统能量同时易引入较大的像差,存在畸变、 彗差等不对称像差,从而影响星敏感器质心的提取 和定位精度;2)星敏感器光学系统的谱段范围较宽, 不同波长的光对折射系统的影响不同,容易引入色 差;3)折射系统的折射率容易受温度变化的影响,导致焦面(焦点所在平面)发生漂移,影响像质。针对以上难点提出的解决方法如下。

- 1)减小像差:大口径易引入像差,且彗差、畸变和倍率色差等不对称像差会降低光学系统的像质。可采用非球面减小这类像差^[12],但非球面的加工检测复杂、周期长,不适合批量生产。实际中可采用对称型复杂化双高斯结构,在设计时尽量将光阑置中,使整套光学镜头呈对称形式,有利于减小不对称像差等像差,但残余的二级光谱像差较大,而非球面不能减小二级光谱。因此,最终采用利于工程实现的12片透镜全球面设计,其中,第1片透镜是保护透镜。
- 2)消色差:星敏感器的谱段范围较宽,不同波长的光对折射系统的影响不同,二级光谱校正难度大。由于衍射元件具有特殊的色散和光焦度特性,采用折衍混合式光学系统可降低色差^[6],但受加工工艺的限制未得到大规模使用。因此,通过选择合适的消色差玻璃材料组合,正透镜选择双凸形式,匹配低色散材料,如H-FK71、D-FK61和H-FK95N;负透镜选择高色散材料,如D-ZLAF52LA,以增大正负透镜的色散差。由于正负透镜的阿贝数相差较大,正负透镜组合方法可降低光学系统的色差。
- 3)消热差设计:温度变化会导致透镜折射率的变化,从而引起焦面漂移。因此,镜筒材料选择低膨胀系数的钛合金材料(线膨胀系数为9.5×10⁻⁶ K⁻¹)。选择消热差玻璃材料时,正透镜尽量选择线膨胀系数小的玻璃材料,使焦移系数尽量小;正负透镜对温度引起的焦移相互补偿,配合机械被动式光学补偿,可减小焦移量。

3.2 初始结构

根据实际工程需要,设计了一种大口径长焦距的折射式星敏感器光学镜头,该镜头的全视场角 2ω 为 14.84° ,入瞳直径为 $125~\rm mm$,焦距为 $200~\rm mm$,谱段范围为 $500\sim800~\rm nm$,用复杂化双高斯物镜作为初始结构,如图 $1~\rm fm$ π 。

3.3 光学镜头的优化过程

光学镜头的具体优化步骤如下。

- 1) 在 ZEMAX 软件中输入初始镜头结构的光 学参数,包括入瞳直径、视场角、波长,各透镜的曲 率半径、厚度和玻璃材料等,并将均方根(RMS)-波 前-参考质心作为光学系统的评价指标。
 - 2) 一般采用 PW 法或选定初始结构缩放焦距

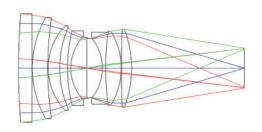
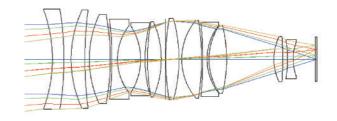


图1 光学系统的初始结构 Fig. 1 Initial structure of the optical system

法优化光学镜头[15],由于初始结构中的透镜数量较 多,PW 法计算复杂,因此采用缩放法。首先,对初 始结构进行优化,由于透镜较大且易脱胶,需要将 胶合透镜分离为单个透镜;然后,添加局部玻璃材 料操作数 MNCG、MXCG、MNEG 和镜间距离操作 数 MNCA、MXCA,并给予操作数相应的权重;最 后,优化透镜曲率半径、厚度、间距的同时限制透镜 形状。先通过优化降低球差,再放大焦距,同时修 正入瞳直径,使视场角、入瞳直径、焦距等参数不断 逼近设计要求。


- 3) 由于初始结构残余像差较大目后截距过长, 在初始结构后组透镜中添加柯克3片式物镜和2片 弯月型透镜,以减小残余像差,优化各透镜的曲率、 厚度和间距等,合理分配光焦度。
- 4) 为了消除不对称像差,保持光阑两侧系统的 对称性,将光阑后移置中,位于第6片透镜后,使后 组透镜尺寸增大,调整后能进一步校正彗差、畸变 等不对称像差。
- 5) 将入瞳直径缩放到 125 mm, 通过 EFFL 给予 操作数权重1将焦距限定为200 mm, 谱段范围为 500~800 nm, 半视场角ω分别选为0°、2°、5°和7.42°。 根据探测器对后截距的要求,设置TTHI、OPGT操 作数,使系统后截距大于17.5 mm,再进行局部优化。
- 6) 初始结构复杂化后,继续局部优化透镜曲率 半径,降低系统球差等单色像差。当系统像差降低 到一定值时,在成都光明玻璃库中选用合适的消色 差玻璃材料组合,设置MNIN和MXIN给予操作数 权重1,限制玻璃材料的折射率范围,局部替换玻璃 材料;设置操作数 AXCL 给予权重1,控制光学系统 整体的倍率色差。
- 7) 系统第1片透镜材料为石英材料,可起到防 潮耐辐射的作用:在探测器前加1片厚度为3 mm的 石英材料滤光片。结合 seidel 系数,进行局部透镜 的曲率、厚度、间距和玻璃材料的优化;设置0,10,

20,30,40 ℃共5个温度点多重结构,兼顾每个多重 结构,局部替换玻璃材料,进行有序反复的优化,最 终得到像质良好的光学镜头。

设计结果和实测结果

4.1 理论设计结果

最终优化出的结构是12片球面镜组成的无渐 晕光学镜头,如图2所示。其中,第1、4、5、9和12片 是负透镜,第2、3、6、7、8、10、11片是正透镜。正负 透镜组合,即同轴球面镜共4组,负正1组、正负负 正2组、正正负正3组、正负4组。第1片石英材料 的负透镜为保护透镜,第7片是近乎等晕的双凸透 镜,第8~10片是3片式透镜,最后1片是厚度为 3 mm的滤光片,第5、6片是初始结构中分离的胶合 透镜,最后将光阑调整到第6片透镜后,即整套透镜 系统的中间。在星敏感器光学系统的设计中,RMS 弥散斑尺寸是评价像质好坏的重要指标之一,该镜 头的RMS弥散斑如图3所示。其中,GEO为几何 半径(最大半径)。可以发现,20℃下点列图各视场 的 RMS 弥散斑半径均小于 3.5 μm, 全视场弥散斑

系统的最终结构

Fig. 2 Final structure of the system

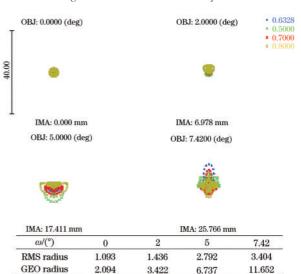


图 3 20℃时系统的点列图

6.737

Fig. 3 Point diagram of the system at 20 °C

半径小于12 μm。

能量集中度曲线能反映能量的扩散情况,由于入瞳直径为125 mm,大口径可将高能量集中到探测器像面,提高探测器探测极限星等的能力。图4为20℃时系统的能量集中图,可以发现,3×3像元内的能量集中度大于90%,容易捕获目标图像。光学设计的MTF是分析镜头成像质量好坏的重要指标,MTF越大,表明系统的成像质量越好。图5为20℃下光学设计的MTF曲线,可以发现,各视场的MTF曲线均比较平直,各视场下光学设计MTF在空间频率60 lp/mm处均优于0.7。

星敏感器光学镜头设计中的畸变为不对称像

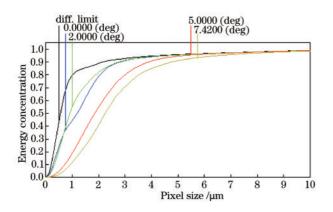


图 4 系统的能量集中图

Fig. 4 Energy concentration diagram of the system

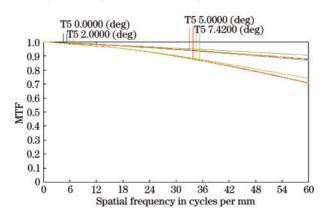


图 5 20 ℃下系统的光学设计 MTF 曲线

Fig. 5 $\,$ Optical design MTF curve of the system at 20 $^{\circ}\!\text{C}$

差,畸变太大会影响图像质心的提取。实验设计的 镜头畸变小于1%,场曲小于0.5%,满足设计要求, 如图6所示。

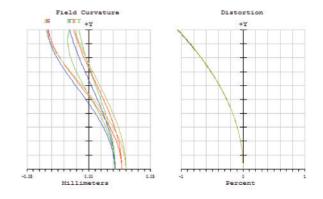


图 6 光学镜头的场曲和畸变曲线

Fig. 6 Field curvature and distortion curves of optical lens

合理选择材料可校正光学镜头的色差,图 7为 20 °C时光学镜头的倍率色差,可以发现,倍率色差 控制在 ± 1.6 μ m。表 3 为该光学镜头所用的国产玻璃材料,其中, N_a 为玻璃的折射率, V_a 为玻璃的阿贝数。满足无热化设计时,焦距的变化量控制在 0.036 mm,表 4 为不同工作温度下光学镜头的焦距。

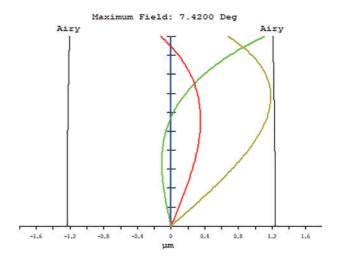


图 7 倍率色差曲线

Fig. 7 Curve of the chromatic aberration of magnification

表 3 玻璃材料的参数 Table 3 Parameters of the glass materials

Glass	s SILICA	H-LAF54	H-FK95N	H-K7	H-ZF3	H-ZPK7	H-ZFKLA	H-FK71	D-ZLAF52LA	D-FK61	H-BAF3	TF3
$N_{ m d}$	1.46	1.80	1.44	1.51	1.72	1.57	1.81	1.46	1.81	1.50	1.58	1.61
$V_{\scriptscriptstyle m d}$	67.80	43.20	94.60	60.60	29.50	71.30	25.50	90.30	41.00	81.60	53.70	44.10

4.2 公差分析

考虑到加工装调误差对实际像质造成的影响,以

弥散斑的尺寸作为公差灵敏度进行公差分析,结果如表5所示,蒙特卡罗分析的500组结果如表6所示。

表4 不同温度下光学镜头的焦距

Table 4 Focal lengths of the optical lens at different temperatures

Temperature /℃	Focal /mm
0	199.964
20	200.000
40	200.036

表 5 公差分析的结果

Table 5 Results of the tolerance analysis

Tolerance	Range			
Radius(fringes)	±3			
Thickness /μm	± 20			
Decenter / µm	± 20			
Tilt /(°)	± 0.01			
Index	0.001			
Abbe / %	1%			

4.3 镜头制作及实测结果

完成光学镜头的研制和装配后,采用定心装调方式安装,如图 8 所示。用美国 OPTIKOS 的光学 MTF 检测仪测试光学系统的各视场角,结果如表 7 和图 9 所示,其中,弧矢面和子午面对应 Sag 和 Tan,采样频率为 30 lp/mm,60 lp/mm。可以发现,静态 MTF 接近实测数据,实际光学设计中各视场的光

表6 蒙特卡洛分析的结果

Table 6 Results of the Monte Carlo analysis

Sampling probability / 1//	RMS spot radius $/\mu m$
98	8. 23
90	7.56
80	6.87
50	5. 21
20	3.98
10	3.45

学设计 MTF 均大于 0.7(60 lp/mm 处),光学 MTF 检测仪实测的光学系统最低静态 MTF 为 0.324(60 lp/mm)。

图 8 定心装调光学镜头 Fig. 8 Centring adjustable optical lens

表7 不同视场实测的MTF

Table 7 MTF measured in different fields of view

Spatial frequency/	Object angle/(°)								
$(lp mm^{-1})$	7.421	5. 214	3. 785	1.556	0	1.553	3.782	5. 211	7.419
Tan 30	0.611	0.711	0.785	0.812	0.795	0.765	0.724	0.693	0.625
Tan 60	0.412	0.481	0.523	0.584	0.514	0.472	0.442	0.411	0.384
Sag 30	0.53	0.613	0.675	0.742	0.785	0.752	0.701	0.655	0.594
Sag 60	0.345	0.421	0.617	0.623	0.576	0.512	0.465	0.381	0.324

图 9 不同视场实测的 MTF

Fig. 9 MTF measured in different fields of view

5 结 论

针对实际工程的需要,设计了一种大口径长焦 距的光学镜头,该镜头的人瞳直径为125 mm,焦距 为200 mm,全视场角2ω为14.84°,谱段范围为 500~800 nm。采用光阑置中的对称型复杂化双高斯物镜作初始结构,选择正负透镜组合消色差玻璃材料,并配合机械被动式光学补偿优化初始光学镜头的结构。20℃温度下的设计结果表明,光学系统的RMS弥散斑半径小于3.5 μm,全视场光学设计MTF在空间频率60 lp/mm处大于0.7,实测光学系统的最低实验室静态MTF为0.324(60 lp/mm处),在3×3像元内的能量集中度大于90%。镜头色差得到了很好的校正,最大倍率色差为1.6 μm,畸变小于1%,光学系统各视场成像质量均满足设计指标。采用12片全球面无胶合紧贴透镜的设计,解决了光学系统加工难度高和装调困难等问题;采用国产玻璃材料,易于批量生产,对于空间遥感领域中要求的大孔径、高能量、高分辨率镜头的设计具有重要意义。

参考文献

- [1] Zhao C. Optical system design of star sensor [D]. Changsha: National University of Defense Technology, 2016.
 - 赵超.星敏感器光学系统设计[D].长沙:国防科学技术大学,2016.
- [2] Lin J C, Sun L W, Chen B Y, et al. Stray light analysis of a coaxial two reflect mirror system and optimized design of inner photomask [J]. Chinese Journal of Lasers, 2013, 40(1): 0116001.

 林剑春, 孙丽崴, 陈博洋, 等. 同轴两反光学系统杂散光分析及内遮光罩优化设计[J]. 中国激光,

2013, 40(1): 0116001.

- [3] Wang Z Q, Wang C Y, Sun H, et al. Design of off-axis three-mirror optical system for dynamic target simulation [J]. Laser & Optoelectronics Progress, 2020, 57(1): 012203.

 王志强,王春艳,孙昊,等. 动态目标模拟离轴三反光学系统的设计[J]. 激光与光电子学进展, 2020, 57(1): 012203.
- [4] Cao C, Liao S, Liao Z Y, et al. Design of off-axis reflective optical system with large field-of-view based on freeform surfaces [J]. Acta Optica Sinica, 2020, 40(8): 0808001. 操超, 廖胜, 廖志远, 等. 基于自由曲面的大视场离轴反射光学系统设计[J]. 光学学报, 2020, 40(8): 0808001.
- [5] Xue Q S. Optical design and stray light analysis for large aperture catadioptricstar sensor[J]. Acta Optica Sinica, 2016, 36(2): 0222001. 薛庆生. 折反式大口径星敏感器光学设计及杂散光分析[J]. 光学学报, 2016, 36(2): 0222001.
- [6] Ren Z G, Li X Y, Ni D W. Compact space optical system design with large relative aperture and field of view[J]. Acta Optica Sinica, 2019, 39(9): 0922001. 任志广,李旭阳,倪栋伟.大相对孔径、大视场、紧凑型空间光学系统设计[J].光学学报,2019,39(9): 0922001.
- [7] Li J L, Lei G Z, Bai Y, et al. Optical path design for catadioptric star sensor with large aperture[J]. Acta Photonica Sinica, 2020, 49(6): 0611002. 李建林, 雷广智, 白杨, 等. 大口径折反式星敏感器光学系统的光路设计[J]. 光子学报, 2020, 49(6): 0611002.

- [8] Gong D. Optical design of high-sensitivity widespectrum star sensor system[J]. Acta Optica Sinica, 2014, 34(S2): S222003. 巩盾. 高灵敏宽谱段星敏感器系统的光学设计[J]. 光学学报, 2014, 34(S2): S222003.
- [9] Michaels D, Speed J. Ball aerospace star tracker achieves high tracking accuracy for a moving star field [C]//2005 IEEE Aerospace Conference, March 5-12, 2005, Big Sky, MT, USA. New York: IEEE Press, 2005; 1-7.
- [10] Wu Y X, Wu H B, Zhang J Z, et al. Optical system design of star camera with high precision better than second level [J]. Chinese Journal of Lasers, 2015, 42(7): 0716001.

 伍雁雄, 吴洪波, 张继真, 等. 亚秒级甚高精度星相 机光学系统设计[J]. 中国激光, 2015, 42(7): 0716001.
- [11] Wu Y X, Qiao J, Wang L P. Optical system design of star sensor with long focal length and athermalization [J]. Infrared and Laser Engineering, 2020, 49(9): 20200061. 伍雁雄, 乔健, 王丽萍. 长焦距无热化星敏感器光学系统设计[J]. 红外与激光工程, 2020, 49(9): 20200061.
- [12] Asadnezhad M, Eslamimajd A, Hajghassem H. Optical system design of star sensor and stray light analysis[J]. Journal of the European Optical Society-Rapid Publications, 2018, 14(1): 1-11.
- [13] Meng X Y, Wang Y, Zhang L, et al. Lens design of star sensor with large relative aperture and wide spectral range [J]. Infrared and Laser Engineering, 2019, 48(7): 0718005.

 孟祥月,王洋,张磊,等.大相对孔径宽光谱星敏感器光学镜头设计[J]. 红外与激光工程,2019,48 (7): 0718005.
- [14] Gong D, Tian T Y, Wang H. Design of wide band and large relative aperture star sensor optical system with asphere[J]. Acta Optica Sinica, 2013, 33(8): 0822001.

 巩盾,田铁印,王红.含有非球面的宽波段大相对 孔径星敏感器光学系统设计[J].光学学报, 2013, 33(8): 0822001.
- [15] Yuan X C. Optical design[M]. Beijing: Beijing Institute of Technology Press, 1988. 袁旭沧.光学设计[M].北京:北京理工大学出版社,1988.